Growing Embryo Endurance
Models or Hatching Embryo Endurance Airplanes
By Bruce Feaver
(This is a very long document . You may wish to download the PDF
version)
Two thousand winds of an elastic band in a 16-inch wingspan model airplane
is amazing, the propeller just keeps on spinning. It’s exciting
to watch these airplanes climb out at a 30-degree climb toward an 80-foot
ceiling in a full size airliner hangar and see them cruising around for
minutes on end. I have spent many hours enjoying the nature of flight
with these small model airplanes and have learned more about flight than
with any other type of airplane model.
The Embryo Endurance model is small and efficient and makes flight to
the ceiling look effortless. The Embryo class of model is a straightforward
design that subscribes to a predetermined set of rules for competitiveness
and fun. I started building these airplanes a number of years ago in
an effort to learn to fly Indoor Model Airplanes. One fine example of
this is the very popular Prairie Bird model, designed by Peck-Polymers,
found at many of the local hobby shops. It did not take long to get the
Prairie Bird to fly a minute and a half with consistent results. Searching
for new challenges, I began working on my own designs of Embryo's and
in the process developed a design procedure that focuses on the detailed
points of Embryo Endurance Models.
In the pages that follow, you will find guidelines that describe the
aerodynamic and stability requirements for the Embryo Endurance Model
and other models in the free flight discipline. After you have completed
reading this information you should be more comfortable in designing
your own great flying Embryo Endurance airplane. Perhaps you will win
some competitions with your own design. In this article we look at the
purpose for the design and the arrangement of aerodynamic factors that
make up the Embryo class of airplanes. You will develop a design procedure
for the development of the airplane and I will help you go through the
layout of your first working drawing in order to build the design from
that.
Embryo Endurance models fly great and are fun to design and build, so
lets look at the class of the model in detail.
Embryo Endurance Rules
1. For rubber powered models with not over 50 square inches of wing
area for monoplanes. For biplanes, not over 70 square inches, with
45 square inches maximum for the largest wing area. Stabilizer area
is not to exceed 50% of the wing area.
2. Fuselage volume is meant to enclose a space 1.25 x 1.50 x 3.00
inches or larger.
3. Wing and tail to be built up frame, covered on both sides with
Japanese tissue or equivalent.
4. Model must ROG (Rise Off Ground) from a card tabletop UNASSISTED
from a three point rest.
5. Landing gear legs must be in a conventional configuration and
have 3/4 inch wheels or larger. (Example: two wheels on one landing
gear is prohibited.) Wheels must turn on their axles.
6. Unlimited attempts for three official rise off table top level
flights.
7. A bonus for the following details will be given: 5 points for
a raised cabin or windscreen with an open cockpit and headrest. Raised
cabin must have at least 30 degrees windshield slant. 3 points for
3-dimensional wheel pants. 1 point for 3-dimensional exhaust pipes.
8. Highest flight total plus bonus points wins. Fly-off to break
ties. Bonus points once again added to flight points.
Design Procedure
The design procedure is a series of steps to work with that allows
one to design to the specifications of the airplane rules in this
class. The airplane design follows on the idea of a strong purpose
arrived at from the rules. These basic steps are followed:
1. Purpose for which it is intended
2. Arrangement of aerodynamic factors that best satisfy the purpose
3. The type most suitable for the purpose
4. Size and proportions
5. Shapes and features
Purpose
The purpose of the Embryo Endurance models is based around the premise
of maximum time aloft, taking into consideration certain limits of
size and shape. The point of this is to test ones ability to get
a model airplane to perform with distinct characteristics.
Additional non-aerodynamic features are included to introduce some
style and additional competition points. Performance is assessed
on the highest flight time total of 3 from four flight attempts plus
bonus points to win. These considerations set the stage for a design
that is optimized for fine flight times and a high degree of style.
Lets take a look at the list of requirements for the Embryo Endurance
airplane as laid out by the Flying Aces Club rule book.
a) Wing area not to exceed 50 square inches for a monoplane,
or 70 square inches in a biplane where the larger wing can't be more
than 45 square inches.
b) Stabilizer not to exceed 50 % of the wing area.
c) Fuselage volume to enclose a space of defined dimensions bounded
by the measurements of 1 1/4" by 1 1/2" by 3" or larger,
arranged in any direction.
d) Landing gear with 3/4" wheels or larger.
e) Plastic or any Non-Folding propeller.
f) Rubber powered only.
g) Model must R.O.G. from a card tabletop, unassisted from a
3-point rest.
h) Additional Bonus Features
i) 5 bonus seconds for a raised cabin or windscreen with
a open hole and headrest
j) 3 bonus seconds for wheel pants.
k) 1 bonus second for 3 dimensional exhaust pipes.
So in a nutshell, good flying endurance, realism in design with good
looks and style. When it comes down to the final situations, these
rules are not so hard to live with.
Arrangement of Aerodynamic Factors
Now that we have looked at the overall design procedure and the embryo
rules and understood the overall purpose of our design we can go about
arranging the aerodynamic factors of an airplane that will begin to
fit into the overall design purpose. The factors to be considered are:
• Center of Lift
• Center of Gravity
• Thrust Line
• Stabilizer Tail Moment Arm and Size
• Fin Moment Arm and Size
• Lateral Area
• Wing Dihedral
• Weights and structural considerations
• Shapes and non-aerodynamic features
Each one of these factors develops relationships with other aerodynamic
factors to produce a design that relates to our design purpose. To
create a duration design in the Embryo class that performs properly
requires a large component of stability built into the design. Now
we must arrange the aerodynamic factors in a manner that promotes good
stability.
Of Planes and Pendulums
The first condition of stability that we begin with, that promotes
good flight qualities, is the condition similar to a pendulum. Since
the pendulum develops a tendency for equilibrium through its relationship
with gravity, we shall use this property of equilibrium in our design
for stability. The pendulum defined as an object suspended from a fixed
support that swings freely back and forth through the action of gravity.
This pendulous motion is found in the lateral and longitudinal stability
of an aircraft in flight. The aerodynamic factors that use the pendulous
relationships in flight are the Center of Lift and the Center of Gravity.
In a duration design, the center of gravity shall be supported below
the center of lift. This will set up the relationships between lateral
and longitudinal stability. As the distance between the center of gravity
and the center of lift increase, so does the ability of our airplane
to remain upright and have small tendencies to swing from side to side.
As the distance between the center of lift and center of gravity decrease
so does the tendency of the airplane to swing from side or side. Since
the airplane design is supported by the wing in flight, through the
center of lift, a fairly low center of gravity is required. The Center
of Lift is a position on the wing that the action of lift and drag
work through, most commonly called the Center of Pressure of the wing.
The Embryo class of model is required to have a fuselage volume of
1.25 x 1.5 x 3 as a minimum and this can be arranged to our benefit
in allowing us to mount the wing on top of the enclosed volume. This
lets the overall gravity of the airplane hang down below the wing.
This also sets a relationship up between the Center of Lift in the
wing and the Center of Gravity in the fuselage. In order to design
a good flying Embryo airplane, a rule of thumb can be employed that
sets up a level of static stability between the center of lift and
the center of gravity. The optimum distance the Center of Lift and
the Center of Gravity should measure is "One Sixth" the Tail
Moment Arm. I tested this rule out on the great flying Embryo airplane
called the "Prairie Bird" by Peck-Polymers. The tail moment
arm of this airplane is 8 inches, which is the distance between the
balance point positions on the wing to the center of the chord position
on the stabilizer.
A calculation of 1/6 of a tail moment of 8 inches measures 1.3 or 1
- 11/32 inches. If we measure this out on the Prairie Bird from the
Center of Lift at the 50% chord point on the wing downwards into the
fuselage volume, we get a spot, which is right in the middle of the
longest length of the fuselage. This happens to be where the centerline
of the airplane is and its thrust line. This should be the maximum
depth the Center of Gravity should reside. I checked the balance point
on my Embryo and found that the vertical C of G was slightly above
this point or only 1 inch below the center of lift. Perhaps this is
due to the fact that I had made no wheel pants and I had used slightly
larger and lighter wheels than the rules call for. As it stands the
rule holds up quite nicely. The 1/6th of the tail moment arm rule is
only a guideline to serve as a starting point for basic design layout.
Locating the Application of Thrust
In many typical designs the thrust line is set below the wing. Since
the wing in flight supports the airplane, thrust contributes to flight
by making the airplane pitch up under power and pitch down while power
is off; this is a favorable effect during takeoff and full power climb.
The question is, what is the best distance the thrust line should be
below the wing and to what degree do we want this pitching under power
applications? The answer is some but not much. Pitching is controlled
partially by the center of gravity being below the wing but also by
the action of the distance the stabilizer is from the wing and the
stabilizer's size.
If we locate the thrust line below the wing and also below the center
of gravity, we have a situation in our favor for the thrust line and
the wing but not in our favor for our center of gravity. In this case,
as the power pitches the plane upward with the wing, the center of
gravity will continue to assist the plane to pitch up. This is not
such a good thing, as we would need a big stabilizer to control this
over-pitching.
What if we could use the center of gravity to help the plane from over-pitching
instead of a bigger stabilizer? We can, we just need to locate the
center of gravity below the thrust line and now our pendulum situation,
we initially designed for, works to stabilize any over-pitching from
the thrust. We now have a system that begins to manage itself through
the placement of aerodynamic factors without making the tail longer
or the stabilizer bigger, all of which could add extra weight.
A good rule to follow for endurance designs is to locate the thrust
line 1/16 the tail moment arm below the wing center of lift. The other
alternate rule is to locate the thrust line as close to the vertical
center of gravity as possible. This was one issue that I found contradictory
to the information I described previously. When I checked the Prairie
Bird Embryo design, I found that the thrust line was located below
the center of lift but also below the center of gravity, it should
have been above the C of G or pretty close to it. Fortunately the vertical
C of G was not far above the thrust line. So for interests’ sake,
try to locate the C of G as close to the thrust line as possible and
below the wing center of lift if at all possible. Room for deviations
from this rule seems to be governed by the style of the aircraft and
the visual presentation of the overall design. The tail moment arm
and the stabilizer size will tend to control the airplane's stability
when these deviations from the rule are made.
Lets look at our Tail Moment Arm we calculated earlier. Since we measured
a distance 50% of the chord line on the wing to the center of the stabilizer
a particular distance, we need to understand how we arrived at this
value. For starters, we measured right off a set of plans for an existing
design and came up with a measurement that someone else had arrived
at. What if we want to develop a design of our own and have no set
of plans to work from, where do we start?
The Tail Moment Arm is characterized by the distance the tail is aft
of the center of gravity location. Since the Center of Lift is located
above the center of gravity the tail moment arm is also the measurement
of the tail behind the center of lift. The purpose of this situation
sets up a degree of longitudinal and lateral stability required for
stable flight. Rules of thumb state that for endurance designs a moment
arm of 40% to 60% of the Wingspan should be calculated. This is a 20%
of variation, which is quite large. If we test this on our Prairie
Bird design, we find that the measurement is 8 inches and this is 50%
of the wingspan.
Another method is to measure 2 1/2 times the wing chord. Since the
chord of the wing on the Prairie Bird is 3" the result for a tail
moment arm is 7.5 inches. This is 46% of the wingspan, which falls
into our first rule between 40 to 60% of the span. This is plenty of
tail length, which allows for a reasonably long motor. We now have
some general guidelines to follow to begin to set up a basic Embryo
design. It's important to remember that the stability of our airplane
will be reflected in the distance the tail is behind the wing.
Stabilizer Requirements
Since the Center of Lift is located between 25% to 50% of the wing
chord, during the different stages of flight, its relationship to the
Center of Gravity is important. Usually the C of G is fixed throughout
flight and the C of L will move for and aft. This sets up a relationship
of changing stability that needs to be controlled at all phases of
flight. We do this through the action of the Stabilizer. Since our
stabilizer is located at the end of the tail moment arm it has to be
the proper size to do the best job possible without creating extra
weight or drag. The size is related to how far behind the wing it is
and the pitching forces of the wing, gravity and thrust line. The job
of the stabilizer is to ensure that the wing flies at the proper angle
of attack for the different phases of flight. The further back the
Center of Gravity gets behind the Center of Lift, the larger the stab
must become to control the pitching stability requirements of the wing.
Conversely, the farther the stabilizer is placed behind the wing the
smaller it requires being, to do the same job of stabilizing the wing.
So how big do we make the stabilizer to balance between the length
of the tail moment arm, center of gravity and the changing pitching
requirements of the wing in flight? In the Embryo Endurance class of
airplanes the stab is allowed to be up to 50% the area of the wing.
This is quite large for the models flight conditions. Typical designs
are around 38% of the wing area and work well at a tail moment of 40%
to 60% of the wingspan. I calculated the Prairie Bird Stab area at
33% of the wing area and this seems to work quite well for a center
of gravity position of 50% of the wing chord.
Other things that may force a designer toward larger amounts of stab
area are the length of the nose and the size of the propeller. Both
of these have tendencies to destabilize airplanes in flight. Another
popular value that takes these factors into account is 38%. Going larger
is permitted only if the center of gravity is to be located more aft
or the tail moment arm is shortened.
Fins are for Fish
The fin of the airplane is of smaller concern for major flight stability
and performance but does play a part in how the airplane flies. Fish
require a large fin for stability in the water and well as a mode of
propulsion; our airplanes have propellers up front for that. These
props require stabilizing due to large amounts of gyroscopic precession
that will tend to make an airplane behave erratically in flight. A
good-sized fin will provide good control for the reactions of propellers.
The fin shall ensure the airplane travels in a forward direction in
flight and keep it from turning around backwards. There are no guidelines
in Embryo Endurance Rules that dictate the size of the fin, but too
large, we tend to carry around extra weight that we don't require.
The basic rule for fin size is 10% of the wing area and is based on
the fact that they are mounted close to the same distance behind the
wing as the stabilizer. The fin tail moment arm for endurance airplanes
of this embryo type is between 40% to 50% of the wing area, so we can
use the stab moment arm for a value and go from there. Remember that
the farther the fin is out on the design the smaller it can be, but
be careful that it's not too small. 10% is a minimum size. If the airplane
is to have a short tail and low or no dihedral then the fin must be
up to 20% of the wing area to ensure directional stability.
The Flying Fish
How should our airplane look as viewed from the side? Fat like a fish
or lean like a shark? The answer is, it depends... It always depends.
Mostly on a balance of the internal space required by the design to
meet its proposed requirements, and streamlining for good flight characteristics.
In Embryo design, our rules specify that the airplane shall have a
defined fuselage volume, perhaps to simulate the cabin or cockpit area
of the airplane. I like this rule as it forces model designers to make
airplanes look like real airplanes and not just flying sticks. It also
forces the design to take on some fuselage volume and develop lateral
area for stability in flight. Lateral area is the term used for the
amount of side area an airplane has as it incorporates things like
places for people and freight. Too much side area ahead of the center
of gravity and the airplanes directional control is compromised, often
making it turn around backward.
If we design our plane to have more lateral area behind the center
of gravity it will have a tendency to fly straight and in line with
the direction of flight similar to the motion of a fish or shark.
What is the Center of Lateral Area anyway? It's the center of pressure
of the air striking the side of the plane. This air striking the side
of the plane has an influence on the directional stability and the
spiral stability of an airplane. If the center of lateral area is too
far forward, the airplane looses its tendency to travel forward through
the air. In general the lateral area should be located behind the center
of gravity to make the airplane directionally stable. Just the fact
that we have a fin attached to the tail section of the airplane ensures
that the center of lateral area gets located behind the center of gravity.
Long noses tend to add lateral area ahead of the center of gravity
and reduce the directional stability so we have to be careful about
the length of the nose of the plane.
A rule of thumb to follow for the location of the lateral area is 10%
to 20% of the tail moment arm. For the Embryo airplane lets pick 15%
for starters. To measure this out, add up the area of the side view
of your model and include the rudder area in the calculation. If you
can calculate the area of this side view and multiply it by 15%, you
will get a measurement in inches that you can measure from the center
of gravity rearward to locate your center of lateral area. This is
not such an easy task as fuselage profile shapes are irregular and
hard to measure out in area. You will find that the fin area on most
designs will locate the center of lateral area back behind the center
of gravity enough to do the job of stability just fine. Fuselages should
be close to 6" inches long and 1 inch in height. However, up to
9 inches long and 1 inch in height is not out of the question for good
streamlining. This rule will help in drawing up a suitable shape for
fuselages without the fin attached.
The rules call for a fuselage volume that is contained by the dimensions
of 1 1/2 inches by 1 1/4 inches by 3 inches. This volume can be arranged
any way one likes but the conventional arrangement is for the 3-inch
length aligned longitudinally. This allows for a wing position to be
mounted high and the thrust line underneath for good stability. Your
fuselage profile can be shaped to enclose this fuselage volume in a
fashion that allows for good streamlining.
Wings for Lift and Stability
Designing a wing for the Embryo is partially completed already, as
the wing area is set by the rules of no larger than 50 square inches.
Most Embryo designs use a pretty common 3-inch chord and a 16-inch
wingspan but we are not bound to simple rectangular shapes. Elliptical
or parabolic plan forms can be used as can taper or double tapered
wings. The most common is a rectangular with tapered tips like the
wing found on the Prairie Bird design.
One important aspect of the flying performance of the Embryo design
is wing dihedral. In high wing designs, the amount of dihedral required
is equal to .125 to .155 of the wingspan. This will tend to raise the
center of lift to a position slightly above the wing mount position.
More built-in stability is developed through an increased distance
between the center of lift and the center of gravity, improving the
pendulum margins of stability. Since the wingspan is, say 16 inches,
then each panel is about 8 inches. By multiplying this number by .155,
you will get about 1 1/4-inch dihedral each tip on each panel or 2
1/2 inches of overall span. This will ensure adequate lateral stability
and move the center of lift up a little higher above the wing.
Weights and Structure
The Embryo class of model operates in a wing loading of .0098 oz per
square inch. This equates to models in the 14-gram class. The great
thing about this class, is the fact that the wing loading is still
pretty light. This makes for flight speeds in around the 15 to 16 mph
range. There seems to be a good margin for changes in weight with respect
to the size of the wing. It is also a fine size of airplane to fly
indoors and out. Most target weights are between 10 grams to 16 grams
for best performance. A good performing Embryo that operates indoors
is capable of up to 2 minutes flight on a 15 inch strand of 3/32 rubber
band.
Shapes and Non-aerodynamic Features
Up to now we have concentrated on the aerodynamic considerations of
the Embryo Endurance model.
Other features of this model are equally important, like shapes, exhausts,
landing gear, finish and color. Each one of these is designed to fit
the overall look and style of your airplane. Fortunately you have probably
given quite a bit of thought to what you want your airplane to look
like and have a concept in your mind of how your plane will appear.
Landing gear should be long enough to allow the propeller to clear
the ground on the takeoff. Windshields are likely built into the design
of the fuselage. Many designs use the Fuselage volume rule to become
a cabin to wrap a windshield around. Exhausts are quite simple and
anything you desire to represent an exhaust pipe is allowed, just keep
it light. Wheel pants are another feature that adds some style to the
plane, in fact quite a bit. Remember to build them light and allow
the wheels to rotate freely within. Many of these features have little
bearing to the aerodynamic considerations but can add weight to the
airplane, which detracts from the overall flight performance.
Up to this point we have reviewed much of the concepts behind the nature
of Embryo Endurance models and have done quite a bit in the preliminary
designing. In this next section we will progress through the complete
design of an Embryo Endurance model so that you can see how all the
aerodynamic considerations go together.
Embryo Endurance Model #1
Proportioning the model — The
Wing
In this design, rules dictate a maximum wing area of 50 square inches
is allowed. We will try to get as close as we can to this quantity
for maximum wing area. Lets label this quantity; A = Area. A = 50 in
sq. Since the wing area is set we can begin to design the next parameter
called Aspect Ratio. This will help us establish the Chord of the wing.
Before we can estimate the wing Chord we have to look at another feature
of our airplane called the Fuselage Volume. Fuse Volume of no smaller
than 1 1/4" by 1 1/2" by 3" or larger is set by the
Embryo rules. Many people use the longest dimension in this Volume
as the wing Chord amount so that the wing has a good support to get
mounted to. So a minimum dimension of 3" can be considered, but
not limited to these three inches. Lets designate wing Chord C. C =
3 inches or greater. This sets one dimension of our wing so we can
begin to find the Span S, from our wing area and wing chord. Span is
A/C so 50 / 3 = 16.6 inches, so Span = 16.6 inches. Now that we have
the Span we can complete the design of Aspect Ratio and refine the
wing a little further. Aspect Ratio is a measure of performance so
we need to find a respectable balance between Span and Chord. High
aspect ratio wings offer better efficiency for these types of airplanes,
however, too high and the wings get too long and skinny. A good aspect
ratio for this airplane is between 4.8 and 6. If we do the math for
Aspect Ratio we will calculate Span / Chord. S / C = 16.6 / 3 = 5.53
which is a good measure of wing efficiency and structural robustness.
To review our information in the design for the wing so far we have:
A = 50 sq. in.
C = 3 in.
S = 16.6 in.
AR = 5.53
The next feature of our wing should be the wing section or airfoil.
In the Embryo Endurance design the flying surfaces have to be covered
with a covering, most commonly a Japanese Tissue. This promotes a flat-bottomed
type airfoil for ease of construction and strength. Airfoil shape is
not so critical so a general rule of thumb for cambered airfoils for
this design is 1/12 the Chord dimension. So a chord of 3" the
thickest portion of the wing section will be about 1/4 of an inch.
Thickness = 1/4" = 1/12 C = 1/12 * 3 we can use a typical Clark
Y airfoil type which is plenty efficient for Embryo and easy to build.
Now we have most of the important factors of our Embryo Endurance model
wing. Now we can go about designing where the wing will go on the fuselage
and be supported by the airframe. We can also design the dihedral into
the wing at this time but first we will locate it on the fuselage.
It's up to you and your sense of style to locate the wing on the fuselage
but there are a couple of considerations. In our previous chapters
we discussed stability and how this related to wing position. It was
determined that if we positioned the wing above the line of flight
it was most stable and that this situation promoted a high wing position.
However, if care is taken, shoulder wing or low wing designs can be
made to work just fine. So, for this design, we will settle on a high
wing position and accept a good degree of stability. Since the wing
is mounted high, a large amount of dihedral is not a big requirement,
between .125 inches to .155 inches of dihedral per inch of wing panel
is suitable. Since each wing panel on our design is 8.3 inches long,
we shall multiply this panel length by say .155 inches and get about
1 1/4 inches of dihedral at each wingtip or 2 1/2 inches in total dihedral
for a 16.6-inch wingspan. This concludes the main elements of the Embryo
wing design.
Proportioning the model — The
Fuselage
To continue proportioning the model, it is best to make a force diagram
that shows how the aerodynamic factors are arranged. This satisfies
our need to visually represent the relationships found in the design
that makes up the basic stability of an Embryo Endurance Model. The
basic reference line for our airplane will be our direction of flight,
which is parallel to the thrust line.
Draw a line horizontally on a fresh piece of paper, right in the middle.
This will become the thrust line. This line is now divided into two
sections which become the nose moment N, and the tail moment M.
Tail moments for Embryo models are about 1/2 of the wingspan and since
we calculated the wingspan at 16.6 inches, the tail moment M = 1/2S
= 16.6/2 = 8.3, so M = 8.3 inches. Previously in the paragraph on Tail
Moment Arms, we also stated that moments of 40% to 60% of the wingspan
were also common. Further to that, a tail moment arm of 2 1/2 times
the wing chord was also common.
On this same line we calculate the nose moment which is generally 1/2M
= 8.3/2 = 4.15, so N = 4.15 inches. To continue the layout on the page,
measure from left to right, first 4.15 inches, then 8.3 inches, which
adds up to a total length of 12.45 inches. The location where N intersects
M is where we locate our center of lift; this is also the location
that the center of gravity acts through.
Wing mounting or wing support, shall follow the rule of 1/6.6 M above
the thrust line where the center of lift of a wing without dihedral
is located. Center of Lift location =1/6.6M = 8.3/6.6 = 1.23 inches.
So locate C of L 1.23 inches up from the thrust line where N and M
intersect.
The Center of Gravity is next; it will reside hopefully below the thrust
line or just on it where Nose and Tail Moment intersect. A general
rule is 1/16M but this is going to vary from design to design.
Now things begin to get a little confusing here so I will try to keep
it as clear as I can. The wing mounting saddle is located 1/2 the dihedral
angle below the Center of Lift position. Our C of L was calculated
at 1.23 inches above the thrust line but the wing saddle will be 5/8
inches below this Center of Lift position. Or 1/13.23M = 0.625 inches
above the thrust line. This saddle is 3 inches long to support the
chord of the wing and satisfy the fuselage volume rule.
All this preliminary setup with the C of L, Thrust line and C of G,
must be carefully worked out step by step as outlined above. The time
taken to set the design up properly like this will ensure a fine flying
design almost every time. But one must try to stay within the confines
of the rules for Embryo Endurance. However there are plenty of fine
adjustments that move these calculations one way or another from our
math that will still allow fine flying operation.
By now we should have a good organization of information to allow the
Embryo design to emerge. Other things not yet determined are stabilizer,
fin and propeller requirements. Other elements that add to the nature
of the design are windshields, landing gear and exhausts, all that
add to your personal elements of style.
Proportioning the model — Tail
Feathers
Now that we have solved our wing and fuselage we have yet to design
for our stabilizer tail moment arm and stabilizer size as well as the
fin tail moment arm and fin area. These features are based on simple
rules of thumb that are defined from many models in the past. The stab
is located aft of the center of gravity and aft of the center of lift
a measured amount. Common designs use a tail moment rule of 2 1/2 times
the wing chord C, or 1/2 a wingspan, or 40% to 60% of the wingspan.
In our previous calculations we settled on a wing chord of 3 inches.
Stabilizer tail moment arm is M=1/2S where S = wingspan. The tail moment
became M = 16.6/2 = 8.3 inches. In this case that's 50% of the span,
or 2 3/4 of the wing chord. A decision to adjust up towards 60% or
down towards 40% is something that you will have to decide upon. Perhaps
just understanding that the longer the tail moment the more dynamically
stable the plane becomes and the shorter the tail moment gets the less
dynamically stable the airplane becomes. Dynamic stability is based
on the time it takes for an airplane to recover from an upset like
a stall. Static stability is based on the tendency that the airplane
will recover in a positive manner. Just having a tail makes the airplane
statically stable, the length of the tail and the size of the stabilizer
sets up the nature of the recovery time dynamically. So we need a plane
that is long enough, but not too long, to fly efficiently. A choice
of 2 3/4 of the wing chord is acceptable. So the distance from the
center of the wing to the center of the stab is 8.25 inches.
Now that we have located the stab position we can calculate the stab
area. In our previous discussion we reviewed the stab rules for the
Embryo class to be up to 50% of the wing area. Understanding that this
is a large amount of area we could reduce it to 33% and still operate
the model with a normal center of gravity position between 33% to 50%
of the wing chord. A 33% stab area will provide a good level of stability.
So 33%of the wing area = stab area. Aw * .33 = Area Stab, where 50
square inches x .33 = 16.5 sq inches of Stabilizer.
The Rudder or Fin tail moment arm was previously discussed as well
and it was decided that a length of between 40% to 50% of the wingspan
was adequate for good yaw stability.
In this example we will calculate both extremes and pick one. Span
x .40 = Tail Moment Arm Fin, or Span x .50 = Tail Moment Arm Fin. 16.6" x
.40 = 6.64 inches up to 16.6 x .50 = 8.3 inches. So now we need to
decide which to pick. As an example, on the Peck Polymers Prairie Bird
a measurement of the location of the center of the fin was at 8.25
inches aft of the center of gravity. So we could pick the 50% position
and do the math at Span x .50 = 8.3 and place the fin 8 5/16" after
of the center of gravity, center of lift.
Fin/rudder areas are typically 10% of the wing area so Wing Area x
.10 = Fin Area, 50 x .10 = 5 square inches. The calculation of a Peck
Prairie Bird reveals a fin area of 4.52 sq. inches so our math of 5
sq. inches holds up nicely.
In my Sharkies Machine design, the stabilizer was designed as a parabolic
shape primarily to satisfy my need for some style. You can use any
shape you like that gives you the area required. However, an appropriate
aspect ratio of Stab Span / Stab Chord = Stab Aspect Ratio. The Prairie
Bird measures an aspect ratio of 3 but my calculations in Stab Aspect
Ratio worked out to close to the same. To calculate the area of a parabolic
shaped Stab you must modify the calculation with a constant of 0.8.
Stab area = span x average chord x 0.8, so 7" x 3" x 0.8
= 16.8 square inches. This fits very nicely with the Stab area requirements
previously arrived at. The Fin/Rudder is styled any way you like but
be aware of the area required and that it's measured properly. My Sharkies
Machine design is actually 9.5% of the wing area and this works great.
Proportioning the model — Propellers
and Details
Embryo Endurance designs are allowed propellers that are non-folding
and are allowed to freewheel. Sizes range from 5.5 inches to 7 inches
primarily due to airplane weight and where the model is flown. Very
light 10-gram embryo models can use a 5.5" prop but are not common.
The bigger outdoor flying embryo's in the 14 to 18 gram class operate
with a 7" propeller and use a little more rubber for power. The
Indoor Embryo in the 12-14 gram class is usually flown with a 6" Peck
Polymers plastic prop. Fine performance is achieved with this size
propeller. One measurement for propellers that is common is the Pitch
to Diameter Ratio. The 6" plastic gray Peck Prop has a pitch to
diameter ratio of 1.5. This is a good starting point for other calculations
in design for many other model airplane rubber power propellers.
Typical Rubber Motors for this airplane is Tan II rubber from Peck
Polymers or Sig. Sizes range in length from 14 to 20 inches and thickness
between 3/32" to 1/8". Good performance is reported with
these sizes, but it will be up to you to test for the right size of
motor on your own as every airplane is different.
By now your model will have taken on some major features and your elements
of style will play a big part in the character of your design. Bonus
points can be received for windows or windscreens, wheel pants and
simulated exhausts. Feel free to add these items to your hearts content,
just remember that weight is important so keep these items light and
as simple as you can. I like to use these features to add some personality
to the airplane so wheel pants were fashioned around the required 3/4-inch
wheels. Windscreens or raised cabins are part of the bonus points and
must have at least a 30 degree windshield slant, but on my designs
I forego a little style and make my windshield a little smaller in
angle as seen on the Sharkies Machine. It's ok to do with a little
less when it comes to bonus points. Some people go without exhausts
or wheel pants.
On To the Building of Embryo Endurance
Models
Embryo Endurance models are easy to design and look good and fly great.
Use this information to your advantage when you design new embryo endurance
airplanes. Please remember that these calculations are for fairly standard
configurations and that you now have permission from me to deviate
from these basic rules to form your own designs from here. The presentation
here will help you understand the nature of Embryo Endurance Airplanes
and get you well on your way to great flying models. Please feel free
to contact me ,
Bruce Feaver, to discuss any of the points you've read here and together
we can enjoy great model designs in the Embryo Endurance Class of Airplane.
Download PDF |